Exact Solutions for the L^1TV **Functional**

Kevin R. Vixie (vixie@lanl.gov)
T-7: Mathematical Modeling and Analysis Group
Los Alamos National Laboratory

Selim Esedoglu (esedoglu@math.ucla.edu)

Department of Mathematics

University of California, Los Angeles

9 October 2005

Outline

- L^2 TV Functional $\to L^1$ TV Functional
- Properties of L^1 TV : $f = \chi_{\Omega} \Rightarrow u = \chi_{\Sigma}$ for some Σ .
- Properties of L^1 TV : For $f = \chi_{\Omega}$, $\int |\nabla u| + \lambda \int |u f| = \text{Per}(\Sigma) + \lambda |\Sigma \triangle \Omega|$
- Properties of L^1 TV: $\Omega = B_{\frac{2}{\lambda}}$ and non-uniqueness.
- Properties of L^1 TV: Preservation of contrast: for any C^2 set Ω there is a λ^* such that $\lambda \geq \lambda^*$ implies that $\Sigma = \Omega$.
- New Result 1: $B_{\frac{2}{\lambda}} \subset \Omega \to \ B_{\frac{2}{\lambda}} \subset \Sigma$
- New Results 2: $B_{\frac{2}{\lambda}} \subset \Omega \to B_{\frac{2}{\lambda} \epsilon} \subset \Sigma$
- New Result 3: A complete characterization of Σ for convex Ω .

Motivation

We are pursuing this research with the following objectives in mind:

- To understand precise nature of denoising/reconstruction we want to understand, in great detail, how methods deform/preserve simple images.
- Allows us to compare denoising methods and understand implicit biases.
- Moves us towards a precise and systematic approach to prior informed regularization for complex experimental images.

ROF Model and BV Functions

The classic Rudin-Osher-Fatemi (ROF) total variation regularized functional:

$$F(u) \equiv \int |\nabla u| dx + \lambda \int |u - f|^2 dx \tag{1}$$

is characterized by simultaneous edge recovery/preservation and noise reduction but also loss of contrast.

- (I) total variation of $u = \int |\nabla u|$
- (II) $u \in BV(\Omega)$ if $u \in L^1(\Omega)$ and $\int |\nabla u| < \infty$.

$$(III) \int |\nabla u| = \sup\{\int \nabla u \cdot \vec{g} \; ; \; |\vec{g}| < 1, \vec{g} \in C_0^1(\Omega; \mathbb{R}^n)\}$$
 (2)

$$= \sup\{ \int u \operatorname{div} \vec{g} \; ; \; |\vec{g}| < 1, \vec{g} \in C_0^1(\Omega; \mathbb{R}^n) \}$$
 (3)

for $u \in W^{1,1}$.

ROF Model and BV Functions: cont.

- (IV) For $u \in L^1(\Omega)$, we use the last equation to define $\int |\nabla u|$
- (V) The theory for $BV(\Omega)$ is extensive and quite beautiful [see for example Giusti's "Minimal Surfaces and Functions of Bounded Variation" and Evan's and Gariepy's "Measure Theory and Fine Properties of Functions"]

Other facts:

- 1. TV(u) is lower semi-continuous in L^1
- 2. Approximation, compactness, and trace results are similar to Sobolev spaces.
- 3. $Du = \nabla u$ is a vector valued Radon measure
- 4. $\int |\nabla u| = \int_{u_{\min}}^{u_{\max}} \operatorname{Per}(\{x \; ; \; u(x) > t\}) dt$ (coarea formula)

L^1 TV Functional: $TV + L^1$ Data Fidelity

The $L^1\ TV$ functional, previously studied by [Alliney], [Nikolova] and [Chan and Esedoglu] is given by:

$$F(u) \equiv \int |\nabla u| dx + \lambda \int |u - f| dx \tag{4}$$

and is characterized by *simultaneous edge recovery/preservation and noise reduction* without the *loss of contrast*. But this is not all:

- 1. F(u) is not strictly convex \Rightarrow we do not have uniqueness!
- 2. u is a minimizer for $f \to Cu$ is a minimizer for Cf
- 3. $f = \chi_{\Omega} \rightarrow u = \chi_{\Sigma}$.

We now look at the properties of $L^1\ TV$ a bit more closely.

L^1 TV: $f=\chi_\Omega\Rightarrow u=\chi_\Sigma$ for some Σ

Result:[Chan and Esedoglu] If u is any minimizer of $F_{\lambda}(u)$ then for almost all $\mu \in [0,1]$,

$$\chi_{\{x:u>\mu\}}$$

is also a minimizer of $F_{\lambda}(u)$.

One Dimensional Example: λ determines which interval of Ω appears in Σ .

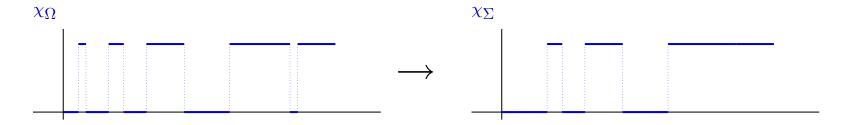
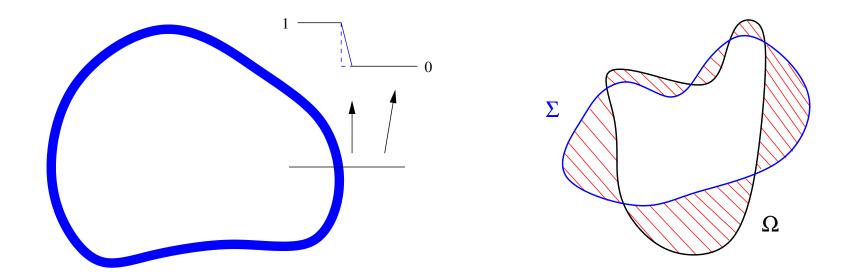


Figure 1: Small segments disappear: λ determines "small"

Segment preserved if $\{\operatorname{Per}(I) = 2 < \lambda L_I \Leftrightarrow L_I > \frac{2}{\lambda}\}.$

$$L^1$$
 TV: $f = \chi_{\Omega} \to F(u) = F(\Sigma) = \text{Per}(\Sigma) + \lambda |\Sigma \triangle \Omega|$

For characteristic functions $u=\chi_{\Sigma}(\text{binary images}) \int |\nabla u|$ is exactly the perimeter and $\lambda \int |u-f| = \lambda \int |\chi_{\Sigma}-\chi_{\Omega}| = \lambda \int |\Sigma \triangle \Omega|$.

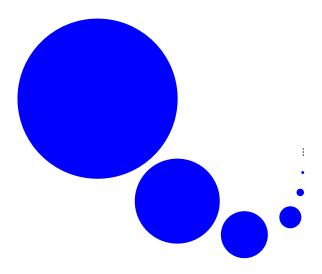


$$\int |\nabla \chi_{\Sigma}| = \operatorname{Per}(\Sigma) \qquad \qquad \lambda \int |u - f| = \lambda \int |\chi_{\Sigma} - \chi_{\Omega}| = \lambda \int |\Sigma \triangle \Omega|$$

L^1 TV: $\Omega=B_{\frac{2}{\gamma}}$ and non-uniqueness.

Result:[Chan and Esedoglu] If $\Omega=B_{\frac{2}{\lambda}}$ then $u=\alpha\chi_{B_{\frac{2}{\lambda}}}$ is a minimizer for any $\alpha\in[0,1].$

One can therefore concoct Ω 's whose solutions $\Sigma(\lambda)$ have, as $\lambda \to \infty$, an infinite number of non-uniqueness points ...



L^1 TV: smooth Ω + big λ imply $\Sigma = \Omega$.

The previous example demonstrated an Ω that is never reproduced by Σ as $\lambda \to \infty$. When Ω is a bounded, C^2 set this can't happen:

Result:[Chan and Esedoglu] For Ω bounded and C^2 there is a $\lambda^* < \infty$ such that for all $\lambda \geq \lambda^*$, $\Sigma = \Omega$.

Choose \vec{g} such that $\int_{\Omega} 1 \text{div} \vec{g} = \text{Per}(\Omega)$:

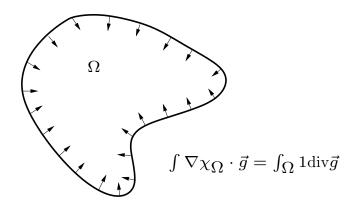


Figure 2: choosing a vector field

L^1 TV: smooth Ω + big λ imply $\Sigma = \Omega$.

$$\operatorname{Per}(\Sigma) + \lambda |\Sigma \triangle \Omega| \geq \int_{\Sigma} 1 \operatorname{div} \vec{g} + \lambda \int_{\Omega \cap \Sigma^{c}} 1 + \lambda \int_{\Omega^{c} \cap \Sigma} 1 \tag{5}$$

$$= \int_{\Omega \cap \Sigma} 1 \operatorname{div} \vec{g} + \int_{\Omega^c \cap \Sigma} 1 \operatorname{div} \vec{g} + \lambda \int_{\Omega \cap \Sigma^c} 1 + \lambda \int_{\Omega^c \cap \Sigma} 1$$
 (6)

$$\geq \int_{\Omega \cap \Sigma} 1 \operatorname{div} \vec{g} + \int_{\Omega^c \cap \Sigma} 1 \operatorname{div} \vec{g} + \int_{\Omega \cap \Sigma^c} 1 \operatorname{div} \vec{g} + \lambda \int_{\Omega^c \cap \Sigma} 1 \tag{7}$$

$$= \int_{\Omega} 1 \operatorname{div} \vec{g} + \int_{\Omega^c \cap \Sigma} 1(\lambda + \operatorname{div} \vec{g}) \tag{8}$$

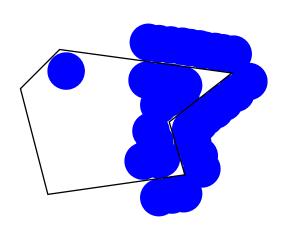
$$\geq \operatorname{Per}(\Omega)$$
 (9)

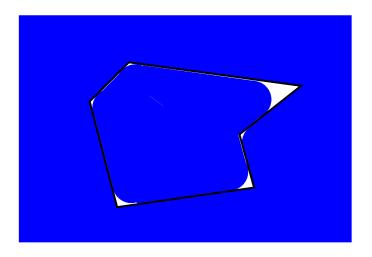
as long as $\lambda > ||\operatorname{div} \vec{g}||_{\infty}$.

New Result 1: $B_{\frac{2}{\lambda}} \subset \Omega \to B_{\frac{2}{\lambda}} \subset \Sigma$

Theorem 1. If $B_r \subset \Omega$ where $r \geq \frac{2}{\lambda}$, then $B_r \subset \Sigma$.

In particular, we can conclude that the boundary of Σ is in the envelope of inside and outside $\frac{2}{\lambda}$ balls.

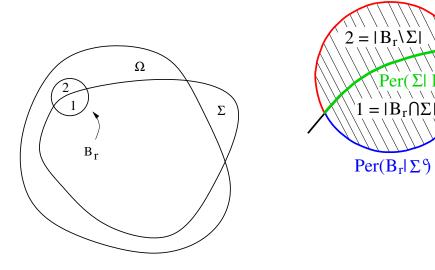




New Result 1: $B_{\frac{2}{\lambda}} \subset \Omega \to B_{\frac{2}{\lambda}} \subset \Sigma$

 $Per(B_r|\Sigma^\circ)$

 B_{r}



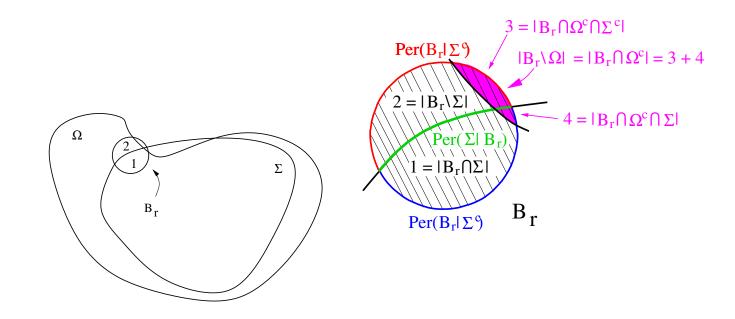
$$E(\Sigma \cup B_r) - E(\Sigma) = (\operatorname{Per}(B_r) - \lambda |B_r|) + (\lambda |B_r \cap \Sigma| - \operatorname{Per}(B_r \cap \Sigma))(10)$$

$$= \left(2\pi r - \frac{2}{R}\pi r^2\right) + \left(\frac{2}{R}\pi \rho^2 - 2\pi \rho^*\right)$$

$$= 2\pi r (1 - \frac{r}{R}) + 2\pi \rho (\frac{\rho}{R} - \frac{\rho^*}{\rho})$$

$$(12)$$

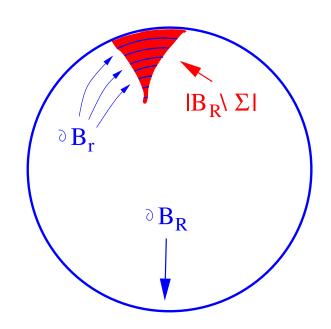
New Result 2: $B_{\frac{2}{\lambda}} \subset \Omega \to B_{\frac{2}{\lambda}-\epsilon} \subset \Sigma$



$$E(\Sigma \cup B_r) - E(\Sigma) \le 2\pi r (1 - \frac{r}{R}) + 2\pi \rho (\frac{\rho}{R} - \frac{\rho^*}{\rho}) + 2\lambda |B_r \setminus \Omega|$$
 (13)

Theorem 2. Given a ball $B_{\hat{r}}$ with $\frac{2}{\lambda} < \hat{r} < \frac{5}{\lambda}$ and an ϵ such that $(1 - \frac{1}{\sqrt{2}}) > \epsilon > 0$, we can choose a $\theta > 0$ such that if $|B_r \setminus \Omega| < \theta |B_{\hat{r}}|$, then $B_{r^*} \subset \Sigma$ for $r^* = (1 - \epsilon)\frac{2}{\lambda}$.

Idea of proof: A Gronwall inequality and Comparisons



$$E(\Sigma \cup B_r) - E(\Sigma) \leq -\operatorname{Per}(\Sigma; B_r(x_0)) + \operatorname{Per}(B_r; \Sigma^c) + \lambda |B_r \setminus \Sigma| \quad (14)$$

$$\leq -C\sqrt{v(r)} + \dot{v}(r) + \lambda v(r) \quad (v(r) \equiv |B_r \setminus \Sigma|) \quad (15)$$

$$\begin{split} 0 & \leq -C\sqrt{v(r)} + \dot{v}(r) + \lambda v(r) \Rightarrow \sqrt{v(r)} \leq \frac{CR}{2} \Big(e^{-\frac{R-r}{R}} - 1 \Big) + \sqrt{|B_R \setminus \Sigma|} \\ & \Rightarrow \text{small enough } |B_R \setminus \Sigma| \Rightarrow v(R-\epsilon) = 0 \Rightarrow B_{R-\epsilon} \subset \Sigma \ . \end{split}$$

 $|B_R \setminus \Omega|$ small $\stackrel{?}{\Rightarrow} |B_R \setminus \Sigma|$ small

Idea of proof:

The rest of the proof is a fairly intricate argument showing that when:

$$|B_R \setminus \Omega| < \delta$$

then of the three cases:

$$1 |B_R \setminus \Sigma| \leq N\delta$$

$$2 N\delta \le |B_R \setminus \Sigma| < \frac{1}{4}\pi R^2$$

$$3 \ \frac{1}{4}\pi R^2 \le |B_R \setminus \Sigma|$$

only case 1 occurs. This is obtained by making use of:

$$E(\Sigma \cup B_r) - E(\Sigma) \le 2\pi r (1 - \frac{r}{R}) + 2\pi \rho (\frac{\rho}{R} - \frac{\rho^*}{\rho}) + 2\lambda |B_r \setminus \Omega| \tag{16}$$

New Result 3: Exact Σ for any convex Ω

Theorem 3. Using a recent result of Allard's, we can conclude that for convex Ω , $\Sigma =$ the union of all $\frac{1}{\lambda}$ balls which are contained in Ω PROVIDED there is at least one $\frac{2}{\lambda}$ ball contained in Ω .

Outline of Proof:

If Ω is convex and Σ (which must be contained in Ω) is not empty, then Σ is the union of the $\frac{1}{\lambda}$ balls in Ω . Our result says that if Ω contains a $\frac{2}{\lambda}$ ball, then it is contained in a solution Σ . Therefore, using Allard's result, Σ must equal the union of $\frac{1}{\lambda}$ balls in Ω .

Comments and Conclusions

- To Do: Establish connections to morphology opening and closing, etc.
- To Do: Exact solutions with noise further results.
- To Do: Understand the regularization and reconstruction aspects image analysis for experimental data in which physics is partly understood and partly being explored.